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Abstract
We present the general form of potentials with two given energy levels E1 and
E2 and find the corresponding wavefunctions. These entities are expressed in
terms of one function ξ(x) and one parameter �E = E2 − E1. We show
how the quantum numbers of both levels depend on the properties of the
function ξ(x). Our approach does not require one to resort to the technique
of supersymmetric quantum mechanics but generates the expression for the
superpotential automatically.

PACS numbers: 0365, 1130P

1. Introduction

Potentials whose spectrum can be found exactly are very rare in quantum mechanics.
Meanwhile, the condition of exact solvability can be weakened: one may demand that only
for a finite part of the spectrum eigenstates and eigenvalues be found explicitly or from a
finite algebraic equation. This opens two different possibilities. First, there exist so-called
quasi-exactly solvable (QES) systems, whose Hamiltonian can be expressed in terms of the
generators of the algebra having a finite-dimensional representation (for one-dimensional
potentials the relevant algebra is sl2, the corresponding generators representing the effective
spin operators) [1–4]. In so doing, the dimension of the finite subspace of the whole Hilbert
space is determined by the value of the effective spin that usually enters the QES potential as
a parameter. Second, instead of relating the dimension of the finite subspace to an underlying
structure of a Lie algebra representation, one may fix the number of known levels ‘by hand’.
In the simplest case this number is equal to two, so we deal with two-dimensional subspace.
Although such a procedure makes the underlying algebraic structure poorer, it considerably
extends the set of potentials with the known part of the spectrum.

Our physical motivation for interest in potentials with two known energy levels stems from
the fact that a two-level system represents a very wide class of models often used in solid state
and nuclear physics and quantum optics. Let us mention here only a few examples: the Dicke
model of interaction between atoms and radiation [5], the Lipkin–Meshkov–Glick model of
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interacting nucleons [8] and the phenomenon of macroscopic quantum tunnelling [7]. We
would like to stress that it is just the potential description of systems with a finite number of
energy levels that enabled one to give a clear and simple explanation of the phenomenon of spin
tunnelling [6]. Therefore, finding potentials that correspond to a fixed numbers of eigenstates,
was an important step in the calculation of the tunnelling rates in ferro- and super-paramagnets.

Meanwhile, there is also the inner motivation that stems from quantum mechanics as such.
From a general viewpoint, recovering potentials from a known set of eigenvalues is nothing
other than the reduced variant of the inverse scattering problem. As is well known, using
the Darboux transformation, one can get many-soliton solutions of the Schrödinger equation
with N energy levels fixed in advance. Understanding how the truncation of the scattering
data modifies the structure of the theory, could gain further insight into the inverse scattering
approach. The first necessary step here is to find the full solution to the problem for N = 2.

If N = 1 (only one level is fixed), it follows from the Schrödinger equation that the
potential is U = E + ψ ′′/ψ , where E is the value of energy, and ψ is a wavefunction.
Choosing any ψ(x) having no zeros at the real axis, we immediately obtain the corresponding
potential U(x), regular on the real axis. We would like to stress, however, that, in contrast to
the N = 1 case, when the solution of the problem is straightforward, even for N = 2 resolving
this problem required the elaboration of different approaches discussed in the literature. The
existence of exact solutions with two levels for power-like potentials was indicated in [9, 10].
The rather powerful technique based on supersymmetric (SUSY) quantum mechanics (see the
review [11]) was suggested in [12, 13]. It enables one to generate the potentials with known
ground and first excited states. The aim of this paper is to suggest a general approach to the
potentials with two known levels valid for any nth excited states. The corresponding method
and results turn out to be surprisingly simple and do not require sophisticated techniques (such
as, for instance, SUSY quantum mechanics).

2. Basic equations

Consider the Schrödinger equation with the Hamiltonian H = − d2

dx2 + U(x). Let ψ1 and ψ2

be wavefunctions obeying the Schrödinger equations

Hψ1 = E1ψ1 (1)

Hψ2 = E2ψ2. (2)

Then it follows from (1), (2) that

U = E1 +
ψ ′′

1

ψ1
(3)

ψ ′′
2

ψ2
= E1 − E2 +

ψ ′′
1

ψ1
. (4)

Let, by definition,

ψ2 = ξψ1. (5)

Then we have for ψ2 from (4):

ψ ′
1

ψ1
≡ −χ ′ = − (ξ ′′ + �Eξ)

2ξ ′ (6)

where �E = E2 − E1. By substitution of (5) and (6) into (4), we obtain three equivalent
forms for the potential:

U = E1 − �E

2
+

3

4

(
ξ ′′

ξ ′

)2

− 1

2

ξ ′′′

ξ ′ + �E
ξξ ′′

ξ ′2 +
1

4
(�E)2

(
ξ

ξ ′

)2

(7)
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U = E1 − �E

2

(
1 − 2

ξξ ′′

ξ ′2

)
+

1

4
(�E)2

(
ξ

ξ ′

)2

− 1

2
[ξ ]x (8)

U = E1 + χ ′2 − χ ′′ (9)

where [ξ ]x ≡ ξ ′′′
ξ ′ − 3

2 (
ξ ′′
ξ ′ )

2 is a Schwarzian derivative (see, e.g., chapter 2.7 of [14]). The
wavefunctions of the states under discussion are

ψ1 = e−χ ψ2 = e−χξ. (10)

Equation (7) gives us the general formula for the potential with two given energy levels. It
is expressed directly in terms of their values E1, E2 as parameters and one function ξ(x),
corresponding wavefunctions are given by (6), (10) and expressed in terms of the same
quantities. It is worth noting that the function ξ(x) does not enter the set of known data—
rather, the freedom in its choice reflects the fact that for two given eigenvalues there exists an
infinite number of potentials having two fixed eigenvalues. The structure of these potentials is
not arbitrary but is governed by the form of ξ(x) according to (7).

Equations (6),(7) and(10) constitute the main result of this paper. It is worth stressing that
the derivation of equation (7) is very simple, direct and does not need sophisticated technique,
such as SUSY machinery. On the other hand, the potential in terms of the function χ ′ has the
form (9), typical for SUSY quantum mechanics, automatically. In so doing, χ ′ plays the role
of a superpotential. As is well known (see, e.g., [11]), one-dimensional quantum mechanics
can always be formulated in a SUSY way. However, given a potential, the superpotential
cannot be found explicitly for a generic model. Meanwhile, in our case we found not only the
potential but also the explicit expression for the superpotential (6).

It is worth stressing that the derivation of (7)–(9) relies strongly on the successful choice
of the function ξ(x) that parametrizes the family of solutions. The fact that, for given E1, E2

the ratio of two eigenfunctions determines the potential completely generalizes the observation
made in [12, 13] for the particular case when the eigenfunctions under consideration refer to
the ground and first excited states.

The formalism elaborated above for the one-dimensional Schrödinger equation can be
also applied to the three-dimensional one for a particle moving in a spherically symmetrical
potential U(r). After the separation of variables, the effective potential entering the radial part
of the Schrödinger equation is equal to Uef = U+ l(l+1)

r2 . Then, repeating calculations step by
step, we obtain

U = U(0) + λ2 ξ 2

4r4ξ ′ − λξ

r2ξ ′

(
1

r
+
ξ ′′

ξ

)
− λ

�Eξ 2

2r2ξ ′2 +
λ − 2l1(l1 + 1)

2r2
(11)

λ = (l2 − l1)(1 + l1 + l2) (12)

and U(0) is expressed in terms of E1, E2 and ξ using the same formulae (7)–(9) as in the
one-dimensional case.

It is worth noting that now a new interesting possibility can arise that is absent in the
one-dimensional case: �E = 0. This becomes possible due to the fact that two quantum
states can refer to different effective potentials (l1 �= l2): we are faced with degeneracy with
respect to the angular momentum. Then the potential acquires the form

U = E1 − 1

2
[ξ ]r + λ2 ξ 2

4r4ξ ′ − λξ

r2ξ ′

(
1

r
+
ξ ′′

ξ

)
+
λ − 2l1(l1 + 1)

2r2
. (13)

We will not discuss the three-dimensional case further and will concentrate on the one-
dimensional one.
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3. General properties and classification of states

The potential U ≡ U(E1, E2, ξ) possesses the symmetries that follow directly from (7):

U(E1, E2, aξ) = U(E1, E2, ξ)

U(E1, E2, ξ) = U(E2, E1, ξ
−1).

(14)

Throughout the paper we assume that the potential U(x) is regular everywhere, except,
perhaps, at infinity. Then all zeros and poles of the function ξ(x) are simple—otherwise the
potentialU would become singular and the wavefunctionψ2 would cease to be normalizable. If
the function ξ has a pole at x = x1, ξ ≈ A(x−x1)

−1, one gets from (6) that χ ′ ≈ −(x−x1)
−1,

so ψ1(x1) = 0, ψ2(x1) = const �= 0. Therefore, every zero of ξ generates a node of the
wavefunction ψ2 and every pole of ξ generates a node of ψ1.

The set of possible nodes of wavefunctions also depends on the behaviour of the function
χ(x) in the vicinity of zeros of the function ξ ′(x) due to possible zeros of the factor
exp (−χ) in (10). Let ξ ′(x0) = 0. Then, according to (6), if x → x0, χ ′ ≈ B/(x − x0),
where B = (ξ ′′ + �Eξ)|x=x0/2ξ ′′(x0), and the potential contains the term that behaves like
B(B + 1)(x − x0)

−2. The regularity of the potential entails B = 0 or −1. Consider these two
cases separately.

First, let B = 0. Now the condition

(ξ ′′ + �Eξ)|x=x0 = 0 (15)

must hold. In so doing, the functionχ(x) is regular in the vicinity of x0 due to the condition (15)
and the factor exp (−χ) cannot vanish.

Consider the case B = −1. Now we have

(3ξ ′′ + �Eξ)|x=x0 = 0. (16)

Then χ ′ ≈ −(x − x0)
−1 and the functions ψ1 and ψ2 share the common node at x = x0

due to the factor exp (−χ), as it follows from (10). (For example, if the potential is even,
U(−x) = U(x), all wavefunctions of odd states vanish at x = 0.)

As a result, we arrive at the conclusion that, if (i) ξ(x) has n1 poles and n2 zeros, (ii) ξ ′(x)
has m(0) zeros such that (15) is satisfied (B = 0) and m(−) zeros such that (16) is satisfied
(B = −1), the function ψ1(x) describes the state with the number of nodes N1 = n1 + m(−),
while ψ2(x) corresponds to the state with the number of nodes N2 = n2 + m(−). Therefore,
the quantum number that labels states is equal to N1 for ψ1 and N2 for ψ2 (N1,2 = 0, 1, 2 . . .).

It follows directly from definition (5): if ψ1 has simple zeros at xi and ψ2 has simple zeros
at xk with xi �= xk , the function ξ has poles at x = xi and zeros at x = xk . However, if some
xi = xk , corresponding zeros of both functions compensate each other and this results in the
fact that, if some coefficients B = −1, the state labels are not determined completely by the
numbers n1, n2.

Let us have two fixed energy levels E1, E2 (E2 > E1) and the function ξ(x) such that
N2 > N1. Then, it is the potential U(E1, E2, ξ) for which the level E1 belongs to the N1th
state and E2 corresponds to the N2th state. If N1 > N2, the relevant potential is U(E1, E2,
ξ−1) = U(E2, E1, ξ ), the level E1 belongs to the N2th state, while E2 corresponds to the N1th
state. If N1 = N2, the function ξ(x) is not suitable for constructing U(x) with two different
fixed levels. Indeed, in this case we would have had two different wavefunctions with the same
number of zeros corresponding to two different levels, in disagreement with the oscillation
theorem.



A general approach to potentials with two known levels 1985

4. Comparison with the SUSY approach and Tkachuk’s results

Let us introduce the function W+ according to

W+ = δξ

ξ ′ (17)

where δ = �E > 0.
Then, with (6) taken into account, we obtain

χ ′ = 1

2

(
W+ − W ′

+ − δ

W+

)
≡ W ≡ W+ − W−

2
U = E1 + W 2 − W ′

ψ1 = e− ∫
dx W ψ2 = ξe− ∫

dx W = W+ exp

[
− 1

2

∫
dx (W+ + W−)

] (18)

where, by definition,

W− = W ′
+ − δ

W+
. (19)

Since ψ1 must be normalizable, sign(W+(±∞)) = ±1. Let W+ have only one zero at x = x0.
If we want W− to be regular at x = x0, W ′

+(x0) = δ.
The formulae (18) (withE1 = 0 and δ = 2ε) were derived in [12] by solving equations for

the superpotential which appear in the SUSY approach. In our terms, this approach deals with
the function ξ(x), such that ξ has only one zero (just in the point x0), ξ ′ changes sign nowhere
and ξ does not have poles on a real axis (otherwise they would give rise to additional zeros of
W+). Therefore, in the situation considered in [12,13] ψ1 corresponds to the ground state and
ψ2 describes the first excited state—in agreement with the conclusion of the previous section
of this paper. Thus, in this particular case our approach reproduces the results of [12, 13].

5. Illustrations. Deformations of potential leaving two levels fixed

To illustrate the general results (7)–(9), let us consider the following example: ξ = x4 +
2x2x2

0 −x4
1 . The derivative ξ ′ = 0 at x = 0; therefore, as is explained in the preceding section,

the corresponding example cannot belong to the set considered in [12]. After straightforward
calculations, one obtains

U = E1 +
x2x4

0

4x8
1

+
1

4x4
1

[
A0 +

A1

x2 + x2
0

+
A2

(x2 + x2
0 )

2

]
(20)

where

A0 = 2x2
0

(
2 +

x4
0

x4
1

)
A1 = (3x4

1 + x4
0)

(
5 − x4

0

x4
1

)

A2 = −(3x4
1 + x4

0)x
2
0

(
7 +

x2
0

x4
1

)
.

(21)

The functions are equal to

ψ1 = (x2 + x2
0 )

−α exp

(
−x2x2

0

2x4
1

)
α = 3x4

1 + x4
0

4x4
1

(22)

ψ2 = ψ1(x
2 − x2

−)(x
2 + x2

+) x± =
√
x4

0 + x4
1 ± x2

0 . (23)

It is seen from (22), (23) that ψ1 has no nodes at the real axis, while ψ2 vanish at x = ±x−.
Therefore, ψ1 corresponds to the ground state, while ψ2 describes the second excited state.
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As we see from (8), the Schwarzian derivative is an essential ingredient of the expression
for the potential under discussion. It is known that the Schwarzian derivative is invariant with
respect to the linear-fractional transformations. Therefore, it is instructive to apply such a
transformation to the potential as a whole and look at the resulting expression. Let us make
the substitution

ξ = c2η + d2

c1η + d1
. (24)

We will use it below for generating in an explicit form rather rich families of the potentials,
corresponding to two known levels. As [η]x remains invariant, only the part of (8) which
contains the terms proportional to �E and (�E)2 changes under this transformation. Then
the potential and wavefunctions of the states under discussion take the form

U = E1 − �E

2
+

2�Ec1(d2 + c2η)

c1d2 − c2d1
+

1

4

Y 2

η′2 − η′′

η′2 Y − 1

2
[η]x

Y = �E
(c1η + d1)(c2η + d2)

c1d2 − c2d1
.

(25)

ψ1,2 = e−ρ$1,2 $1,2 = c1,2η + d1,2

ρ ′ = η′′ − Y

2η′ χ = ρ − ln (c1η + d1).
(26)

If c2 = 0 = d1, one can see that Y = �Eη and U(E1, E2, ξ) = U(E1, E2, η
−1) =

U(E2, E1, η) in accordance with (14).
In the limit

c1 = 0 = d2 (27)

we obtain the original potential U(E1, E2, ξ) = U(E1, E2, η).
Let us assume first we have some function η(x) characterized by the set of numbers (n1,

n2, m(−)) introduced in section 3. The original potential has the form (7) with ξ = η. Then, let
us take ξ(x) according to (24) with nonzero arbitrary coefficients ci and di . As the result of the
transformation of (24), each of the aforementioned numbers can change (for example, zeros
x
(1)
k of the combination c1η + d1 generate poles of ξ , zeros x(2)i of c2η + d2 correspond to zeros

of ξ , each zero x
(0)
j �= x

(1)
k of η′ generates a zero of ξ ′). Therefore, the levels E1, E2 which

corresponded to the N1th and N2th levels now can, in principle, correspond to other quantum
numbers (M1, M2). Making the transformation, inverse to (24), one may restore the form of
the potential (7), but now ξ �= η, with ξ having the form (24), in which coefficients under
discussion play the role of parameters. Thus, we obtain a family of deformations leaving two
energy levels E1, E2 fixed. These deformations can be described, on an equal footing, by the
deformation of the form of the function ξ(x) or of that of the potential.

For definiteness, we will choose the second possibility. If c1, c2 �= 0, one can always
achieve c1 = c2 ≡ c by proper rescaling of the function ξ(x) that does not affect, according
to (14), the function U(x). Then, defining

c = 2β d1 = −δ̄ − �E d2 = −δ̄ + �E γ = (�E)2 − δ̄2

4β
(28)

we obtain

Y = βη2 − δ̄η − γ (29)

U = E1 +
�E

2
− δ̄ + 2βη − 1

2
[η]x +

1

4

(βη2 − δ̄η − γ )2

η′2 − η′′

η′2 (βη
2 − δ̄η − γ ). (30)

Below we will see how introducing nonzero parameters β, γ affects the potential and
wavefunctions (26).
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5.1. Example 1

Let us choose η as a polynomial:

η′ = 4ax(x2
0 − x2) a > 0

η = a(V0 + x4
0 − z2) z = x2 − x2

0 V0 = const.
(31)

Demanding that ρ ′ be regular at x = 0 and at x = ±x0 , we obtain from (26) the constraints

γ = βa2(V0 + x4
0)

2 + 8ax2
0 − δa(V0 + x4

0) = βa2V 2
0 − 4ax2

0 − δ̄aV0 (32)

whence

V0 = −x4
0

2
− 6

aβx2
0

+
δ̄

2βa

γ = β−1

(
R − δ̄2

4

)
R = (�E)2

4
= β2a2x8

0

4
+ 2βax2

0 + 36x−4
0 .

(33)

The expression for the function ξ reads

ξ = 1 +
2�E

A2x4 + A1x2 + A0
. (34)

The potential can be obtained from (30) or directly from (7). It has the formU = ∑5
n=0 c2nx

2n,
c10 = (βa)2/64. It is convenient to rescale the variable in such a way that the coefficient
in the potential U at the largest power be equal to 1. This can be achieved by x = λy,
βaλ6 = 8ω, where ω = 1 or −1. After some manipulations we get the new potential
Ū = λ2U , corresponding to levels Ē1,2 = λ2E1,2:

Ū = y10 − 6µy8 +

(
13µ2 +

3ω

µ

)
y6 − (12µ3 + 22ω)y4 +

(
4µ4 + 31µω +

9

4µ2

)
y2

+
Ē1 + Ē2

2
− 15

2µ
− 6ωµ2 (35)

ρ = y6

6
− 3µωy4

4
+ y2

(
µ2ω +

3

4µ

)
(�Ē)2 = 16µ−2(4µ6 + 4ωµ3 + 9) (36)

where µ = x2
0/λ

2. (In fact, the formula (35) can also be extended to negative µ.) The
quantities µ and Ē1,2 are not independent but connected by equation (36) that appeared due
to the condition of the regularity of the potential (15). It is worth noting that the parameter δ̄
cancels and does not enter the expression (35) due to the conditions (32), (33).

It follows from (26), (28) and (33) that, up to the constant factor, the function $1,2 =
z2 − 2µz + q1,2 = (z− z1)(z− z2), z ≡ y2, z1,2 = µ± √

µ2 − q1,2, q1,2 = µ2

2 + 3
4µω± �Ē

16 ω.
Let, for definiteness, E2 > E1. Consider first the case ω = 1. Then after some algebra one
easily finds that 0 < q2 < µ2 and q1 > µ2. Therefore, the function $1 does not have the
nodes at the real axis and corresponds to the ground state. The function $2 has four zeros and
corresponds to the fourth state. In a similar way, we obtain that for ω = −1 the quantities
q1 < 0, 0 < q2 < µ2, so the wavefunctions under discussion describe the second and fourth
excited states.

5.2. Example 2

One may exploit the ansatz (17) with ξ = η for the potential (30) with β, γ �= 0. Substituting
it into (26), one obtains

ρ ′ = −1

2

[
(W ′

+ − δ)

W+
− δ̄W+

δ
+
βW+

δ
exp

(
δ

∫
dx

W+

)
− γW+

δ
exp

(
−δ

∫
dx

W+

)]
. (37)
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Let us consider the example

W+ = ax + bx3 γ = 0 β �= 0 a = δ = δ̄ > 0 b > 0. (38)

After simple but cumbersome manipulations we get the potential

U = βx

x0

(
−x2

0

r
+ 3r +

ar3

2
− ar5

2x2
0

)
+ u r ≡

√
x2

0 + x2 x2
0 ≡ a

b

u = b2

4
x6 +

(
ab

2
+
β2

4

)
x4 +

(a2 − 12b)

4
x2 − a

2
+

3

4(x2
0 + x2)

+
3

4

x2
0

(x2 + x2
0 )

2

(39)

and wavefunctions

ψ1 = (x2 + x2
0 )

3/4

(
x +

√
x2 + x2

0

)βx3
0/16

e−α

(
1 − β

a
η

)
ψ2 = η(x2 + x2

0 )
3/4

(
x +

√
x2 + x2

0

)βx3
0/16

e−α

η = xx0√
x2 + x2

0

α = ax2

4
+
bx4

8
− βx

16x0
(2x2 + x2

0 )

√
x2 + x2

0 .

(40)

It is seen from (40) that η′ > 0 and the potential (39) is regular for any choice of parameters, so
the conditions (15), (16) are irrelevant for this case. The functionsψ1 andψ2 are normalizable,
provided β2 < ab. It can be readily seen from (40) that the function ψ2 has one node at x = 0,
whereas ψ1 vanish nowhere. Thus, ψ1 and ψ2 correspond to the ground and the first excited
states, respectively. In the limit β = 0 we reproduce the result for example 3 of [12].

5.3. Example 3

Let now W+ = A(shx − shx0), γ = 0, β �= 0, δ = δ̄. Then, repeating calculations for this
case, we get

U = E1 + E2

2
− δ

2
+ U0(x) +

βsh (x−x0)

2

chx0ch (x+x0)

2

[
chx + chx0 − δ(shx − shx0)

2

2chx0

]
+
β2sh4 (x−x0)

2

ch2x0

U0(x) = δ2

4ch2x0
(shx − shx0)

2 − δ

2chx0
(2chx − chx0) +

1

4
(41)

ψ1 = ch
(x + x0)

2
e−α

(
1 − β

δ
η

)
ψ2 = ch

(x + x0)

2
e−αη η = sh (x−x0)

2

ch (x+x0)

2

α = (2chx0)
−1[δchx − βsh(x − x0) + x(β − δshx0)].

Here U0 is the potential corresponding to the spin- 1
2 anisotropic paramagnet in an oblique

magnetic field [1]. The function η′ > 0, so ρ(x) is regular in any point for any choice of
parameters. The wavefunction is normalizable provided −δe−x0 < β < δex0 . One can easily
show that it follows from this condition that ψ1 does not have nodes and corresponds to the
ground state, while ψ2 has one node at x = x0 and corresponds to the first excited state. In the
limit β = 0 the example 1 of [12] is reproduced.

6. Concluding remarks

Thus, in a very simple and direct approach we found a rather general solution that gives us the
structure of potentials with two known eigenstatesE1,E2 in terms of one function ξ(x) and one
parameter coinciding with the energy difference �E = E2 − E1. Moreover, we get not only
the potential itself, but also (in terms of the SUSY language) the superpotential. Depending
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on properties of the function ξ(x) and the type of the regularity condition of the potential in
the vicinity of zeros of ξ ′(x) ((15) or (16)), one can obtain not only the ground or first excited
state but, in principle, any pair of levels. The natural question arises whether the approach
of this paper is extendable to the case of three (or more) levels. This problem needs separate
treatment. We hope that movement in this direction will promote further understanding links
between QES-type systems, SUSY and the inverse scattering approaches.
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